1,461 research outputs found

    Impulsive aggressiveness of pregnant women affects the development of the fetal heart

    Get PDF
    Mounting evidence indicates that the development of the fetus is heavily influenced by the intra-uterine milieu during pregnancy, and that such influence may have life-long consequences for the individual. The intra- uterine milieu is not only influenced by nutritional factors, but also by maternal endocrine and autonomic activity. Such activity is prone to be affected by an individual's personality, but only little is known about influences of maternal personality on the development of the fetus. We tested pregnant women for their propensity for impulsive, uncontrollable outbursts of temper (referred to here as moderate Intermittent Explosive Disorder, mIED). After the women gave birth, we measured electrocardiograms (ECGs) from their newborn infants to compare ECGs between newborns of women with and without mIED. The data show that infants of women with mIED have larger QRS complexes in the electrocardiogram, and lower heart rate variability, compared to infants of women without mIED. These results reveal effects of maternal mIED on the fetal heart development. These effects may predispose the individual to increased risk for later cardio-vascular disease. The findings open perspectives for better risk prevention models for the unborn child

    Special Values of Zeta-Functions for Proper Regular Arithmetic Surfaces

    Get PDF
    We explicate Flach's and Morin's special value conjectures in [8] for proper regular arithmetic surfaces π : X → Spec Z and provide explicit formulas for the conjectural vanishing orders and leading Taylor coefficients of the associated arithmetic zeta-functions. In particular, we prove compatibility with the Birch and Swinnerton-Dyer conjecture, which has so far only been known for projective smooth X. Further, we derive a direct sum decomposition of Rπ*Z(n) into motivic degree components

    Simulating the dynamics of relativistic stars via a light-cone approach

    Get PDF
    We present new numerical algorithms for the coupled Einstein-perfect fluid system in axisymmetry. Our framework uses a foliation based on a family of light cones, emanating from a regular center, and terminating at future null infinity. This coordinate system is well adapted to the study of the dynamical spacetimes associated with isolated relativistic compact objects such as neutron stars. In particular, the approach allows the unambiguous extraction of gravitational waves at future null infinity and avoids spurious outer boundary reflections. The code can accurately maintain long-term stability of polytropic equilibrium models of relativistic stars. We demonstrate global energy conservation in a strongly perturbed neutron star spacetime, for which the total energy radiated away by gravitational waves corresponds to a significant fraction of the Bondi mass. As a first application we present results in the study of pulsations of axisymmetric relativistic stars, extracting the frequencies of the different fluid modes in fully relativistic evolutions of the Einstein-perfect fluid system and making a first comparison between the gravitational news function and the predicted wave using the approximations of the quadrupole formula

    Axisymmetric core collapse simulations using characteristic numerical relativity

    Get PDF
    We present results from axisymmetric stellar core collapse simulations in general relativity. Our hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global dynamics of the collapse. Contrary to traditional approaches based on the 3+1 formulation of the gravitational field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star formation. Perhaps most importantly this procedure allows for the unambiguous extraction of gravitational waves at future null infinity without any approximation, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our results concerning the gravitational wave signals show noticeable disagreement when those are extracted by computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the other hand. We have strong indication that for our setup the quadrupole formula on the null cone does not lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show typical oscillation frequencies of about 0.5 kHz.Comment: 17 pages, 18 figures, submitted to Phys. Rev.

    Tethered subsatellite study

    Get PDF
    The results are presented of studies performed relating to the feasibility of deploying a subsatellite from the shuttle by means of a tether. The dynamics, the control laws, the aerodynamics, the heating, and some communication considerations of the tethered subsatellite system are considered. Nothing was found that prohibits the use of a subsatellite joined to the shuttle by a long (100 km) tether. More detailed studies directed at specific applications are recommended

    Gravitational waves from axisymmetrically oscillating neutron stars in general relativistic simulations

    Full text link
    Gravitational waves from oscillating neutron stars in axial symmetry are studied performing numerical simulations in full general relativity. Neutron stars are modeled by a polytropic equation of state for simplicity. A gauge-invariant wave extraction method as well as a quadrupole formula are adopted for computation of gravitational waves. It is found that the gauge-invariant variables systematically contain numerical errors generated near the outer boundaries in the present axisymmetric computation. We clarify their origin, and illustrate it possible to eliminate the dominant part of the systematic errors. The best corrected waveforms for oscillating and rotating stars currently contain errors of magnitude 103\sim 10^{-3} in the local wave zone. Comparing the waveforms obtained by the gauge-invariant technique with those by the quadrupole formula, it is shown that the quadrupole formula yields approximate gravitational waveforms besides a systematic underestimation of the amplitude of O(M/R)O(M/R) where MM and RR denote the mass and the radius of neutron stars. However, the wave phase and modulation of the amplitude can be computed accurately. This indicates that the quadrupole formula is a useful tool for studying gravitational waves from rotating stellar core collapse to a neutron star in fully general relativistic simulations. Properties of the gravitational waveforms from the oscillating and rigidly rotating neutron stars are also addressed paying attention to the oscillation associated with fundamental modes

    Small-x Dipole Evolution Beyond the Large-N_c Limit

    Get PDF
    We present a method to include colour-suppressed effects in the Mueller dipole picture. The model consistently includes saturation effects both in the evolution of dipoles and in the interactions of dipoles with a target in a frame-independent way. When implemented in a Monte Carlo simulation together with our previous model of energy--momentum conservation and a simple dipole description of initial state protons and virtual photons, the model is able to reproduce to a satisfactory degree both the gamma*-p cross sections as measured at HERA as well as the total p-p cross section all the way from ISR energies to the Tevatron and beyond

    Combining central pattern generators with the electromagnetism-like algorithm for head motion stabilization during quadruped robot locomotion

    Get PDF
    Visually-guided locomotion is important for autonomous robotics. However, there are several difficulties, for instance, the head shaking that results from the robot locomotion itself that constraints stable image acquisition and the possibility to rely on that information to act accordingly. In this article, we propose a controller architecture that is able to generate locomotion for a quadruped robot and to generate head motion able to minimize the head motion induced by locomotion itself. The movement controllers are biologically inspired in the concept of Central Pattern Generators (CPGs). CPGs are modelled based on nonlinear dynamical systems, coupled Hopf oscillators. This approach allows to explicitly specify parameters such as amplitude, offset and frequency of movement and to smoothly modulate the generated oscillations according to changes in these parameters. We take advantage of this particularity and propose a combined approach to generate head movement stabilization on a quadruped robot, using CPGs and a global optimization algorithm. The best set of parameters that generates the head movement are computed by the electromagnetism-like algorithm in order to reduce the head shaking caused by locomotion. Experimental results on a simulated AIBO robot demonstrate that the proposed approach generates head movement that does not eliminate but reduces the one induced by locomotion

    Bondian frames to couple matter with radiation

    Full text link
    A study is presented for the non linear evolution of a self gravitating distribution of matter coupled to a massless scalar field. The characteristic formulation for numerical relativity is used to follow the evolution by a sequence of light cones open to the future. Bondian frames are used to endow physical meaning to the matter variables and to the massless scalar field. Asymptotic approaches to the origin and to infinity are achieved; at the boundary surface interior and exterior solutions are matched guaranteeing the Darmois--Lichnerowicz conditions. To show how the scheme works some numerical models are discussed. We exemplify evolving scalar waves on the following fixed backgrounds: A) an atmosphere between the boundary surface of an incompressible mixtured fluid and infinity; B) a polytropic distribution matched to a Schwarzschild exterior; C) a Schwarzschild- Schwarzschild spacetime. The conservation of energy, the Newman--Penrose constant preservation and other expected features are observed.Comment: 20 pages, 6 figures; to appear in General Relativity and Gravitatio
    corecore